// PerformanceMelsec.cpp: implementation of the CPerformanceMelsec class. // ////////////////////////////////////////////////////////////////////// #include "stdafx.h" #include "PerformanceMelsec.h" #include #include #include #ifdef _DEBUG #undef THIS_FILE static char THIS_FILE[] = __FILE__; #define new DEBUG_NEW #endif #ifdef _DEBUG #define LOG_ERROR(msg) \ std::cerr << "[ERROR] " << __FILE__ << ":" << __LINE__ << " (" << __FUNCTION__ << ") - " << msg << std::endl; #define LOG_DEBUG(msg) \ std::cout << "[DEBUG] " << __FILE__ << ":" << __LINE__ << " (" << __FUNCTION__ << ") - " << msg << std::endl; #else #define LOG_ERROR(msg) #define LOG_DEBUG(msg) #endif // 初始化静态成员变量 std::unordered_map CPerformanceMelsec::m_mapError = { // 板块SDK错误码 {0, "No error, communication successful."}, {1, "Driver not started. The driver is not running."}, {2, "Timeout error (board response error). Request not completed within timeout."}, {66, "Already OPEN error. The specified channel is OPEN."}, {68, "Path error. The specified path is invalid."}, {69, "Unsupported function execution error."}, {70, "Station number error. The specified station number is invalid."}, {71, "No received data error (during RECV function)."}, {77, "Memory allocation error / insufficient memory resources."}, {85, "SEND/RECV channel number error."}, {100, "Board H/W resource busy."}, {101, "Routing exception."}, {102, "Board driver I/F error: Failed to send request data to the board driver."}, {103, "Board driver I/F error: Failed to receive response data from the board driver."}, {130, "Initial software component No. Error."}, {131, "Capacity error."}, {133, "Parameter error."}, {16385, "Specified target station number does not exist."}, {16386, "Received a request that the target station cannot process."}, {16418, "Failed to create the event history file."}, {16420, "Failed to access the event history file."}, {16421, "Another board driver is using the event history file."}, {16432, "The specified soft component type does not exist."}, {16433, "Soft component specification error: Out of range or invalid start I/O or block number."}, {16512, "Request data exception: Invalid data or unsupported module."}, {16685, "File association error: Failed to create the event history file."}, {16837, "File association error: Event history file does not exist."}, {18944, "Link association error: Network does not exist, unsupported CPU, or incorrect network No./station number."}, {-1, "Invalid path. The specified function is not supported for this path."}, {-2, "Start component No. error. The specified component is out of range."}, {-3, "Capacity error. The capacity exceeds the component range."}, {-6, "Component type error. The specified type during write is invalid."}, {-8, "Channel No. error. The channel specified is invalid."}, {-12, "Target path error. The specified path points to an invalid target."}, {-13, "Write protection area error. The specified range is protected."}, {-16, "Target path conflict. The path conflicts with write protection settings."}, {-17, "Device not found or target not responding."}, {-18, "Invalid target. The device does not support the operation."}, {-19, "Invalid path operation. An unsupported path operation was executed."}, {-31, "DLL library call failed or path not initialized."}, {-32, "Resource timeout error. Communication timed out or exceeded resource limits."}, {-33, "Communication timeout error. The target is not responding or timed out."}, {-34, "Unsupported communication target error. The specified network No. or station No. points to an unsupported model."}, {-35, "Registry access error."}, {-36, "Registry access error."}, {-37, "Communication initialization error. The settings for initializing the communication path are invalid."}, {-42, "Key information error. Authentication failed."}, {-43, "Marking event error. TC waiting event write was executed on the CPU."}, {-61, "Marking event error. TC waiting event write was executed on the CPU."}, {-62, "Event waiting timeout. The specified external event waiting timed out."}, {-63, "Timeout value is out of range."}, {-64, "Timeout value is out of range."}, {-65, "Event waiting timeout. The specified external event waiting timed out."}, {-66, "Timeout-induced resource shortage."}, {-67, "Irrelevant file access execution error."}, {-69, "Operation executed, but the module does not support the function."}, {-70, "The target event processing module returned a rejection."}, {-71, "The remote station did not return data correctly."}, {-72, "Pointer error. The specified pointer value is invalid."}, {-73, "Specified address error."}, {-2174, "Buffer data queue exception occurred. Read/write exception to device."}, {-7656, "Buffer data queue exception. Read/write exception to the device."}, {-7672, "Buffer data queue exception. Read/write exception to the device."}, {-11683, "Buffer data transfer error."}, {-11717, "Network No. error."}, {-11746, "Station No. error."}, {-12128, "Buffer data send/response error."}, {-18560, "Module mode setting error."}, {-18572, "Communication method error."}, {-25056, "Processor error."}, {-26334, "Duplicate program call or illegal CPU operation."}, {-26336, "Routing request error to a station without routing function support."}, {-27902, "Event register timeout error."}, {-28079, "Communication No. read error."}, {-28080, "Communication No. incorrect error."}, {-28136, "Unsupported function in fast mode error."}, {-28139, "Link disconnection error."}, {-28140, "Incorrect mode setting error."}, {-28141, "System reboot error."}, {-28142, "Mode error."}, {-28143, "Hardware self-diagnosis error."}, {-28144, "Hardware self-diagnosis error."}, {-28150, "Data reception interruption at remote station error."}, {-28151, "Data reception interruption at remote station error."}, {-28153, "Data reception interruption at remote station error."}, {-28154, "Abnormal data reception error."}, {-28158, "Driver WDT error."}, {-28160, "Hardware resource error."}, {-28622, "Dedicated instruction channel in-use error."}, {-28634, "Hardware self-diagnosis error."}, {-28636, "Hardware self-diagnosis error."}, // 自定义错误码 {ERROR_CODE_UNKNOWN, "Error: Unknown error code."}, {ERROR_CODE_NOT_CONNECTED, "Error: Not connected to the device."}, {ERROR_CODE_INVALID_PARAM, "Error: Invalid parameter."}, {ERROR_CODE_INVALID_DATA, "Error: Invalid data provided."}, {ERROR_CODE_STATION_OUT_OF_RANGE, "Error: Station number is out of range."}, {ERROR_CODE_GROUP_OUT_OF_RANGE, "Error: Group number is out of range."}, {ERROR_CODE_NETWORK_OUT_OF_RANGE, "Error: Network number is out of range."} }; ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// CPerformanceMelsec::CPerformanceMelsec(const BoardType enBoardType) { m_nPath = 0; m_enBoardType = enBoardType; m_bConnected.store(false); } // 析构函数 CPerformanceMelsec::~CPerformanceMelsec() { Disconnect(); } // 获取最近的错误信息 std::string CPerformanceMelsec::GetLastError() const { return m_strLastError; } // 保存错误信息 bool CPerformanceMelsec::SaveErrorInfoToFile(const std::string& filename) { // 打开文件 std::ofstream file(filename); if (!file.is_open()) { std::cerr << "Failed to open file for saving: " << filename << std::endl; return false; } // 遍历静态成员变量 m_mapError 并将每个错误信息写入文件 for (const auto& entry : m_mapError) { const int nCode = entry.first; const std::string& strMessage = entry.second; file << nCode << "|" << strMessage << "\n"; } file.close(); return true; } // 加载错误信息 bool CPerformanceMelsec::LoadErrorInfoFromFile(const std::string& filename) { std::ifstream inFile(filename); if (!inFile.is_open()) { std::cerr << "Failed to open file for loading: " << filename << std::endl; return false; } m_mapError.clear(); std::string line; while (std::getline(inFile, line)) { std::istringstream iss(line); int nCode = 0; std::string strToken; std::string strMessage; // 使用分隔符 "|" 解析每一行 if (std::getline(iss, strToken, '|')) { nCode = std::stoi(strToken); } if (std::getline(iss, strToken)) { strMessage = strToken; } if (!strMessage.empty()) { m_mapError[nCode] = strMessage; } } return true; } // 连接到PLC int CPerformanceMelsec::Connect(const short nChannel, const short nMode) { std::lock_guard lock(m_mtx); if (m_bConnected.load()) { return 0; } const BoardType enBoardType = FindBoardTypeByChannel(nChannel); if (enBoardType == BoardType::UNKNOWN || enBoardType != m_enBoardType) { UpdateLastError(ERROR_CODE_INVALID_PARAM); return ERROR_CODE_INVALID_PARAM; } // 连接PLC,显式类型转换以匹配 mdOpen 的签名 const short nRet = mdOpen(nChannel, nMode, &m_nPath); if (nRet == 0) { m_bConnected.store(true); m_enBoardType = enBoardType; } else { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 断开连接 int CPerformanceMelsec::Disconnect() { std::lock_guard lock(m_mtx); short nRet = 0; if (m_bConnected.load()) { nRet = mdClose(m_nPath); m_bConnected.store(false); m_nPath = 0; } UpdateLastError(nRet); LOG_DEBUG("Close connect."); return nRet; } // 可编程控制器软元件信息表的初始化 int CPerformanceMelsec::InitializeController() { std::lock_guard lock(m_mtx); if (!m_bConnected.load()) { UpdateLastError(ERROR_CODE_NOT_CONNECTED); return ERROR_CODE_NOT_CONNECTED; } const short nRet = mdInit(m_nPath); if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 获取版本信息 int CPerformanceMelsec::GetBoardVersion(BoardVersion& version) { if (!m_bConnected.load()) { UpdateLastError(ERROR_CODE_NOT_CONNECTED); return ERROR_CODE_NOT_CONNECTED; } // 获取版本信息 short buf[32] = {0}; const short nRet = mdBdVerRead(m_nPath, buf); if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); return nRet; } // 填充版本信息到结构体 version.fixedValue[0] = static_cast(buf[0] & 0xFF); version.fixedValue[1] = static_cast((buf[0] >> 8) & 0xFF); version.checksum[0] = static_cast(buf[1] & 0xFF); version.checksum[1] = static_cast((buf[1] >> 8) & 0xFF); version.swVersion[0] = static_cast(buf[2] & 0xFF); version.swVersion[1] = static_cast((buf[2] >> 8) & 0xFF); std::memcpy(version.date, &buf[3], 6); version.reserved = static_cast(buf[6]) | (static_cast(buf[7]) << 16); std::memcpy(version.swModel, &buf[8], 16); std::memcpy(version.hwModel, &buf[16], 16); version.twoPortMemory[0] = static_cast(buf[18] & 0xFF); version.twoPortMemory[1] = static_cast((buf[18] >> 8) & 0xFF); version.twoPortAttribute[0] = static_cast(buf[19] & 0xFF); version.twoPortAttribute[1] = static_cast((buf[19] >> 8) & 0xFF); version.availableBias[0] = static_cast(buf[20] & 0xFF); version.availableBias[1] = static_cast((buf[20] >> 8) & 0xFF); std::memcpy(version.moduleType, &buf[21], 10); return nRet; } // 读取目标站点CPU类型 int CPerformanceMelsec::ReadCPUCode(const StationIdentifier& station, short& nCPUCode) { // 验证站点参数和数据有效性 int nRet = ValidateStation(station); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 确保线程安全的最小锁定范围 { nCPUCode = 0; std::lock_guard lock(m_mtx); nRet = mdTypeRead(m_nPath, CombineStation(station), &nCPUCode); } if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 板模式设置 int CPerformanceMelsec::SetBoardMode(const short nMode) { // 检查是否已经连接 if (!m_bConnected.load()) { UpdateLastError(ERROR_CODE_NOT_CONNECTED); return ERROR_CODE_NOT_CONNECTED; } // 确保线程安全的最小锁定范围 short nRet = 0; { std::lock_guard lock(m_mtx); nRet = mdBdModSet(m_nPath, nMode); } if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 获取板模式 int CPerformanceMelsec::GetBoardMode(short& nMode) { // 检查是否已经连接 if (!m_bConnected.load()) { UpdateLastError(ERROR_CODE_NOT_CONNECTED); return ERROR_CODE_NOT_CONNECTED; } short nRet = 0; { nMode = 0; std::lock_guard lock(m_mtx); nRet = mdBdModRead(m_nPath, &nMode); } if (nRet != 0) { UpdateLastError(nRet); LOG_DEBUG("Raw Mode: " << nMode); LOG_ERROR(m_strLastError); } return 0; } // 板复位 int CPerformanceMelsec::BoardReset() { std::lock_guard lock(m_mtx); if (!m_bConnected.load()) { UpdateLastError(ERROR_CODE_NOT_CONNECTED); return ERROR_CODE_NOT_CONNECTED; } const short nRet = mdBdRst(m_nPath); if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 板LED读取 int CPerformanceMelsec::ReadBoardLed(std::vector& vecLedBuffer) { std::lock_guard lock(m_mtx); if (!m_bConnected.load()) { UpdateLastError(ERROR_CODE_NOT_CONNECTED); return ERROR_CODE_NOT_CONNECTED; } // 清空 LED 缓冲区 vecLedBuffer.clear(); vecLedBuffer.resize(16, 0); // 调用 SDK 函数读取 LED 数据 const short nRet = mdBdLedRead(m_nPath, vecLedBuffer.data()); if (nRet != 0) { UpdateLastError(ERROR_CODE_NOT_CONNECTED); LOG_ERROR("Error reading board LED, ErrorCode: " << nRet); LOG_ERROR(m_strLastError); } return nRet; } // 获取板状态 int CPerformanceMelsec::GetBoardStatus(BoardStatus& status) { std::lock_guard lock(m_mtx); if (!m_bConnected) { UpdateLastError(ERROR_CODE_NOT_CONNECTED); return ERROR_CODE_NOT_CONNECTED; } short buf[6] = {0}; const short nRet = mdBdSwRead(m_nPath, buf); if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } // 将 buf 映射到结构体 status = BoardStatus::fromBuffer(buf); return 0; } // 通用读数据 int CPerformanceMelsec::ReadData(const StationIdentifier& station, const short nDevType, const short nDevNo, short nSize, std::vector& vecData) { // 验证站点参数和数据有效性 int nRet = ValidateStationAndSize(station, nSize); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 初始化读取缓冲区 vecData.clear(); vecData.resize(nSize); // 确保线程安全的最小锁定范围 { std::lock_guard lock(m_mtx); short* pData = vecData.data(); nRet = mdReceive(m_nPath, CombineStation(station), nDevType, nDevNo, &nSize, pData); } if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } if (nRet != 0) { vecData.clear(); // 如果读取失败,清空缓冲区 } return nRet; } // 读取位数据 int CPerformanceMelsec::ReadBitData(const StationIdentifier& station, const DeviceType enDevType, const short nDevNo, const short nBitCount, BitContainer& vecData) { // 验证站点参数和数据有效性 int nRet = ValidateStationAndSize(station, nBitCount); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 计算需要读取的字节大小(按位对齐为字节数) const short nDevType = CalculateDeviceType(station, enDevType); const auto nSize = static_cast((nBitCount + 7) / 8); // 向上取整 std::vector vecTempBuffer((nSize + 1) / 2, 0); // 临时缓冲区,字节对齐 nRet = ReadData(station, nDevType, nDevNo, nSize, vecTempBuffer); if (nRet == 0) { std::lock_guard lock(m_mtx); // 线程安全保护 ConvertShortToUint8(vecTempBuffer, vecData); } return nRet; } // 读取字数据 int CPerformanceMelsec::ReadWordData(const StationIdentifier& station, const DeviceType enDevType, const short nDevNo, const short nWordCount, WordContainer& vecData) { // 验证站点参数和数据有效性 int nRet = ValidateStationAndSize(station, nWordCount); if (nRet != 0) { UpdateLastError(nRet); return nRet; } const short nDevType = CalculateDeviceType(station, enDevType); std::vector vecTempBuffer(nWordCount, 0); nRet = ReadData(station, nDevType, nDevNo, nWordCount, vecTempBuffer); if (nRet == 0) { vecData.clear(); vecData.assign(vecTempBuffer.begin(), vecTempBuffer.end()); } return nRet; } // 读取双字数据 int CPerformanceMelsec::ReadDWordData(const StationIdentifier& station, const DeviceType enDevType, const short nDevNo, const short nDWordCount, DWordContainer& vecData) { // 验证站点参数和数据有效性 int nRet = ValidateStationAndSize(station, nDWordCount); if (nRet != 0) { UpdateLastError(nRet); return nRet; } const auto nSize = static_cast(nDWordCount * 2); // 每个双字占两个字(每个双字占 4 字节) const short nDevType = CalculateDeviceType(station, enDevType); std::vector vecTempBuffer(nSize, 0); nRet = ReadData(station, nDevType, nDevNo, nSize, vecTempBuffer); if (nRet == 0) { std::lock_guard lock(m_mtx); // 线程安全保护 ConvertShortToUint32(vecTempBuffer, vecData); } return nRet; } // 通用写数据 int CPerformanceMelsec::WriteData(const StationIdentifier& station, const short nDevType, const short nDevNo, short nSize, short* pData) { // 验证站点参数 int nRet = ValidateStation(station); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 数据有效性 if (nSize < 0 || pData == nullptr) { UpdateLastError(ERROR_CODE_INVALID_PARAM); return ERROR_CODE_INVALID_PARAM; } // 确保线程安全的最小锁定范围 { std::lock_guard lock(m_mtx); nRet = mdSend(m_nPath, CombineStation(station), nDevType, nDevNo, &nSize, pData); } if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 写位数据 int CPerformanceMelsec::WriteBitData(const StationIdentifier& station, const DeviceType enDevType, const short nDevNo, const BitContainer& vecData) { // 验证站点参数和数据有效性 const int nRet = ValidateStationAndData(station, vecData); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 计算需要写入的字节数(位数据需要按 8 位对齐为字节数) const short nDevType = CalculateDeviceType(station, enDevType); const auto nSize = static_cast((vecData.size() + 7) / 8); std::vector vecBuffer(vecData.size() / 2 + vecData.size() % 2, 0); { std::lock_guard lock(m_mtx); // 线程安全保护 ConvertUint8ToShort(vecData, vecBuffer); } return WriteData(station, nDevType, nDevNo, nSize, vecBuffer.data()); } // 写字数据 int CPerformanceMelsec::WriteWordData(const StationIdentifier& station, const DeviceType enDevType, const short nDevNo, const WordContainer& vecData) { // 验证站点参数和数据有效性 const int nRet = ValidateStationAndData(station, vecData); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 计算需要写入的字节数(每个字占 2 字节) const short nDevType = CalculateDeviceType(station, enDevType); const auto nSize = static_cast(vecData.size() * sizeof(uint16_t)); const auto pData = const_cast(reinterpret_cast(vecData.data())); return WriteData(station, nDevType, nDevNo, nSize, pData); } // 写双字数据 int CPerformanceMelsec::WriteDWordData(const StationIdentifier& station, const DeviceType enDevType, const short nDevNo, const DWordContainer& vecData) { // 验证站点参数和数据有效性 const int nRet = ValidateStationAndData(station, vecData); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 计算需要写入的字节数(每个双字占 4 字节) const short nDevType = CalculateDeviceType(station, enDevType); const auto nSize = static_cast(vecData.size() * sizeof(uint32_t)); std::vector vecBuffer(vecData.size() * 2, 0); { std::lock_guard lock(m_mtx); // 线程安全保护 ConvertUint32ToShort(vecData, vecBuffer); } return WriteData(station, nDevType, nDevNo, nSize, vecBuffer.data()); } // 扩展读数据 long CPerformanceMelsec::ReadDataEx(const StationIdentifier& station, long nDevType, long nDevNo, long nSize, std::vector& vecData) { // 验证站点参数和读取大小是否有效 long nRet = ValidateStation(station); if (nRet != 0) { UpdateLastError(nRet); return nRet; } if (nSize < 0) { UpdateLastError(ERROR_CODE_INVALID_PARAM); return ERROR_CODE_INVALID_PARAM; } vecData.resize(nSize); long nActualSize = (nSize + 1) / 2; std::vector vecBuffer(nActualSize, 0); { std::lock_guard lock(m_mtx); // 线程安全保护 nRet = mdReceiveEx(m_nPath, station.nNetNo, station.nStNo, nDevType, nDevNo, &nActualSize, vecBuffer.data()); } if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } else { std::lock_guard lock(m_mtx); // 线程安全保护 ConvertShortToChar(vecBuffer, vecData); } return 0; } // 扩展写数据 long CPerformanceMelsec::WriteDataEx(const StationIdentifier& station, long nDevType, long nDevNo, const std::vector& vecData) { // 验证站点参数和数据有效性 long nRet = ValidateStationAndData(station, vecData); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 将 vecData 转换为 short 类型的缓冲区 long nSize = static_cast(vecData.size()); std::vector vecBuffer((nSize + 1) / 2, 0); { std::lock_guard lock(m_mtx); // 线程安全保护 ConvertCharToShort(vecData, vecBuffer); nRet = mdSendEx(m_nPath, station.nNetNo, station.nStNo, nDevType, nDevNo, &nSize, vecBuffer.data()); } // 错误处理和日志记录 if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 扩展软元件随机读取 long CPerformanceMelsec::ReadRandomDataEx(const StationIdentifier& station, const std::vector& vecSoftElements, std::vector& vecData) { if (vecSoftElements.empty()) { UpdateLastError(ERROR_INVALID_PARAMETER); LOG_ERROR("Invalid parameters: soft elements are empty."); return ERROR_INVALID_PARAMETER; } // 准备 dev 数据 std::vector devBuffer(vecSoftElements.size() * 3 + 1, 0); // 每个软元件需要 3 个 short,外加一个计数器 devBuffer[0] = static_cast(vecSoftElements.size()); // 第一个元素是软元件数量 for (size_t i = 0; i < vecSoftElements.size(); ++i) { const SoftElement& element = vecSoftElements[i]; devBuffer[i * 3 + 1] = element.nType; // 软元件类型 devBuffer[i * 3 + 2] = static_cast(element.nStartNo); // 起始软元件编号 devBuffer[i * 3 + 3] = element.nElementCount; // 点数 } // 计算读取数据所需缓冲区大小 long nBufferSize = 0; for (const auto& element : vecSoftElements) { nBufferSize += element.nElementCount * 2; // 每个点占用 2 个字节 } // 锁保护及调用 mdRandREx long nRet = 0; std::vector vecBuffer(nBufferSize / 2, 0); { std::lock_guard lock(m_mtx); // 确保线程安全 nRet = mdRandREx(m_nPath, station.nNetNo, station.nStNo, devBuffer.data(), vecBuffer.data(), nBufferSize); } // 错误处理和日志记录 if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); return nRet; } // 将读取到的 short 数据转换为 char 数据 vecData.resize(nBufferSize); for (size_t i = 0; i < vecBuffer.size(); ++i) { vecData[i * 2] = static_cast(vecBuffer[i] & 0xFF); // 低字节 vecData[i * 2 + 1] = static_cast((vecBuffer[i] >> 8) & 0xFF); // 高字节 } return nRet; } // 扩展软元件随机写入(支持多个软元件) long CPerformanceMelsec::WriteRandomDataEx(const StationIdentifier& station, const std::vector& vecSoftElements, const std::vector& vecData) { if (vecSoftElements.empty() || vecData.empty()) { UpdateLastError(ERROR_INVALID_PARAMETER); LOG_ERROR("Invalid parameters: soft elements or data is empty."); return ERROR_INVALID_PARAMETER; } // 准备 dev 数据 std::vector devBuffer(vecSoftElements.size() * 3 + 1, 0); // 每个软元件需要 3 个 long,外加一个计数器 devBuffer[0] = static_cast(vecSoftElements.size()); // 第一个元素是软元件数量 for (size_t i = 0; i < vecSoftElements.size(); ++i) { const SoftElement& element = vecSoftElements[i]; devBuffer[i * 3 + 1] = static_cast(element.nType); // 软元件类型 devBuffer[i * 3 + 2] = element.nStartNo; // 起始软元件编号(已经是 long 类型,无需转换) devBuffer[i * 3 + 3] = static_cast(element.nElementCount); // 点数 } // 锁保护及调用 mdRandWEx long nRet = 0; std::vector vecBuffer(vecData.size() / 2, 0); { std::lock_guard lock(m_mtx); // 确保线程安全 ConvertCharToShort(vecData, vecBuffer); nRet = mdRandWEx(m_nPath, station.nNetNo, station.nStNo, devBuffer.data(), vecBuffer.data(), static_cast(vecBuffer.size())); } // 错误处理和日志记录 if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 远程设备站/远程站的缓冲存储器读取 long CPerformanceMelsec::ReadRemoteBuffer(const StationIdentifier& station, long nOffset, long nSize, std::vector& vecData) { // 验证站点参数和数据有效性 int nRet = ValidateStation(station); if (nRet != 0) { UpdateLastError(nRet); return nRet; } if (nSize < 0) { UpdateLastError(ERROR_CODE_INVALID_PARAM); return ERROR_CODE_INVALID_PARAM; } long nActualSize = (nSize + 1) / 2; std::vector vecBuffer(nActualSize, 0); { std::lock_guard lock(m_mtx); // 线程安全保护 nRet = mdRemBufReadEx(m_nPath, station.nNetNo, station.nStNo, nOffset, &nActualSize, vecBuffer.data()); } if (nRet != 0) { UpdateLastError(nRet); // 更新错误码 LOG_ERROR(m_strLastError); } else { std::lock_guard lock(m_mtx); // 线程安全保护 ConvertShortToChar(vecBuffer, vecData); } return nRet; } // 远程设备站/远程站的缓冲存储器写入 long CPerformanceMelsec::WriteRemoteBuffer(const StationIdentifier& station, long nOffset, const std::vector& vecData) { // 验证站点参数和数据有效性 long nRet = ValidateStationAndData(station, vecData); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 将 vecData 转换为 short 类型的缓冲区 long nSize = static_cast(vecData.size()); std::vector vecBuffer((nSize + 1) / 2, 0); { std::lock_guard lock(m_mtx); // 线程安全保护 ConvertCharToShort(vecData, vecBuffer); nRet = mdRemBufWriteEx(m_nPath, station.nNetNo, station.nStNo, nOffset, &nSize, vecBuffer.data()); } if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 远程站的缓冲存储器读取 对象站IP地址指定 long CPerformanceMelsec::ReadRemoteBufferByIp(const std::string& strIP, long nOffset, long nSize, std::vector& vecData) { uint32_t nAddress = 0; if (nSize < 0 || !ConvertIpStringToUint32(strIP, nAddress)) { UpdateLastError(ERROR_CODE_INVALID_PARAM); return ERROR_CODE_INVALID_PARAM; } // 将缓冲区大小调整为 nSize vecData.resize(nSize, 0); std::vector vecBuffer((nSize + 1) / 2, 0); // 转换为 short 类型 // 调用底层 SDK long nRet = 0; { std::lock_guard lock(m_mtx); // 线程安全保护 nRet = mdRemBufReadIPEx(m_nPath, static_cast(nAddress), nOffset, &nSize, vecBuffer.data()); } if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } else { std::lock_guard lock(m_mtx); // 线程安全保护 ConvertShortToChar(vecBuffer, vecData); } return nRet; } // 远程站的缓冲存储器写入 对象站IP地址指定 long CPerformanceMelsec::WriteRemoteBufferByIp(const std::string& strIP, long nOffset, const std::vector& vecData) { uint32_t nAddress = 0; if (vecData.empty() || !ConvertIpStringToUint32(strIP, nAddress)) { UpdateLastError(ERROR_CODE_INVALID_PARAM); return ERROR_CODE_INVALID_PARAM; } // 转换 vecData 为 short 类型的缓冲区 long nSize = static_cast(vecData.size()); std::vector vecBuffer((nSize + 1) / 2, 0); long nRet = 0; { std::lock_guard lock(m_mtx); // 线程安全 ConvertCharToShort(vecData, vecBuffer); nRet = mdRemBufWriteIPEx(m_nPath, static_cast(nAddress), nOffset, &nSize, vecBuffer.data()); } if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 设置(ON)对象站的指定位软元件 int CPerformanceMelsec::SetBitDevice(const StationIdentifier& station, const DeviceType enDevType, const short nDevNo) { // 验证站点参数 int nRet = ValidateStation(station); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 确保线程安全的最小锁定范围 { std::lock_guard lock(m_mtx); // 线程安全 const short nDevType = CalculateDeviceType(station, enDevType); nRet = mdDevSet(m_nPath, CombineStation(station), nDevType, nDevNo); } if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 复位(OFF)对象站的指定位软元件 int CPerformanceMelsec::ResetBitDevice(const StationIdentifier& station, const DeviceType enDevType, const short enDevNo) { // 验证站点参数 int nRet = ValidateStation(station); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 确保线程安全的最小锁定范围 { std::lock_guard lock(m_mtx); const short nDevType = CalculateDeviceType(station, enDevType); nRet = mdDevRst(m_nPath, CombineStation(station), nDevType, enDevNo); } if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 扩展位软元件设置 long CPerformanceMelsec::SetBitDeviceEx(const StationIdentifier& station, long nDevType, long nDevNo) { std::lock_guard lock(m_mtx); // 检查参数有效性 long nRet = ValidateStation(station); if (nRet != 0) { UpdateLastError(nRet); return nRet; } nRet = mdDevSetEx(m_nPath, station.nNetNo, station.nStNo, nDevType, nDevNo); if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 扩展位软元件复位 long CPerformanceMelsec::ResetBitDeviceEx(const StationIdentifier& station, long nDevType, long nDevNo) { std::lock_guard lock(m_mtx); // 检查参数有效性 long nRet = ValidateStation(station); if (nRet != 0) { UpdateLastError(nRet); return nRet; } nRet = mdDevRstEx(m_nPath, station.nNetNo, station.nStNo, nDevType, nDevNo); if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 执行对象站的CPU int CPerformanceMelsec::ControlCPU(const StationIdentifier& station, ControlCode enControlCode) { // 验证站点参数和数据有效性 int nRet = ValidateStation(station); if (nRet != 0) { UpdateLastError(nRet); return nRet; } // 验证控制码是否合法 const auto nControlCode = static_cast(enControlCode); if (nControlCode < 0 || nControlCode > 2) { UpdateLastError(ERROR_CODE_INVALID_PARAM); // 参数错误 return ERROR_CODE_INVALID_PARAM; } // 确保线程安全的最小锁定范围 { std::lock_guard lock(m_mtx); nRet = mdControl(m_nPath, CombineStation(station), nControlCode); } if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } // 事件等待 int CPerformanceMelsec::WaitForBoardEvent(std::vector vecEventNumbers, const int nTimeoutMs, EventDetails& details) { std::lock_guard lock(m_mtx); if (!m_bConnected.load()) { UpdateLastError(ERROR_CODE_NOT_CONNECTED); return ERROR_CODE_NOT_CONNECTED; } if (vecEventNumbers.empty() || vecEventNumbers.size() > 64) { UpdateLastError(ERROR_CODE_INVALID_PARAM); return ERROR_CODE_INVALID_PARAM; } // 第 0 个元素存储数量,最大支持 64 个事件 std::array eventno = {0}; eventno[0] = static_cast(vecEventNumbers.size()); std::copy(vecEventNumbers.begin(), vecEventNumbers.end(), eventno.begin() + 1); // 初始化输出参数 details.nEventNo = 0; details.details.fill(0); const int nRet = mdWaitBdEvent(m_nPath, eventno.data(), nTimeoutMs, &details.nEventNo, details.details.data()); if (nRet != 0) { UpdateLastError(nRet); LOG_ERROR(m_strLastError); } return nRet; } //============================================辅助函数======================================================= // 更新最近的错误信息 void CPerformanceMelsec::UpdateLastError(const int nCode) { if (nCode == 0) { return; } // 检查错误码是否存在于映射表中 const auto it = m_mapError.find(nCode); if (it != m_mapError.end()) { // 如果找到,直接返回对应语言的错误信息 m_strLastError = it->second; } else { // 如果未找到,处理特殊范围 m_strLastError = "Unknown error."; if (nCode == -28611 || nCode == -28612) { // 系统出错 m_strLastError = "System error."; } if (nCode >= -20480 && nCode <= -16384) { // CC-Link 系统检测出的错误 m_strLastError = "Error detected in the CC-Link system."; } if (nCode >= -12288 && nCode <= -8193) { // CC-Link IE TSN 系统检测出的错误 m_strLastError = "Error detected in the CC-Link IE TSN system."; } if (nCode >= -8192 && nCode <= -4097) { // CC-Link IE 控制网络系统检测出的错误 m_strLastError = "Error detected in the CC-Link IE control network system."; } if (nCode >= -4096 && nCode <= -257) { // MELSECNET/10 或 MELSECNET/网络系统错误范围 m_strLastError = "Errors detected in MELSECNET/10 or MELSECNET/network system."; } if (nCode >= 4096 && nCode <= 16383) { // MELSEC 数据链接库范围 m_strLastError = "Internal error detected by MELSEC Data Link Library."; } if (nCode == 18944 || nCode == 18945) { // 链接关联出错 m_strLastError = "Link association error: Network does not exist, unsupported CPU, or incorrect network No./station number."; } if (nCode >= 16384 && nCode <= 20479) { // PLC CPU 检测范围 m_strLastError = "Errors detected by the programmable controller CPU in the target station."; } if (nCode >= 28416 && nCode <= 28671) { // 冗余功能模块范围 m_strLastError = "Error detected in the redundancy module of the target station."; } } } // 检查连接状态和站点参数有效性 int CPerformanceMelsec::ValidateStation(const StationIdentifier& station) const { // 检查是否已连接 if (!m_bConnected.load()) { return ERROR_CODE_NOT_CONNECTED; } // 检查网络号和站点号范围 if (station.nNetNo < 0 || station.nNetNo > 239 || station.nStNo < 0 || station.nStNo > 255) { return ERROR_CODE_INVALID_PARAM; } return 0; // 参数有效 } // 验证站点参数和数据有效性 int CPerformanceMelsec::ValidateStationAndSize(const StationIdentifier& station, const short nCount) const { // 验证站点参数 const int nRet = ValidateStation(station); if (nRet != 0) { return nRet; // 如果站点验证失败,返回对应错误码 } if (nCount <= 0) { return ERROR_CODE_INVALID_PARAM; } return 0; // 验证通过 } // IP字符串转uint32_t bool CPerformanceMelsec::ConvertIpStringToUint32(const std::string& strIP, uint32_t& nIP) { nIP = 0; std::stringstream ss(strIP); std::string strSegment; int nShift = 24; while (std::getline(ss, strSegment, '.')) { const auto nByte = static_cast(std::stoi(strSegment)); if (nByte > 255) { return false; } nIP |= (nByte << nShift); nShift -= 8; } return true; } //============================================静态辅助函数==================================================== // 延时,并且转发窗口消息 void CPerformanceMelsec::Delay(const unsigned int nDelayMs) { MSG message; // 如果延迟时间为 0,仅处理一次消息队列 if (nDelayMs == 0) { // 非阻塞的检查消息队列 if (PeekMessage(&message, nullptr, 0, 0, PM_REMOVE)) { TranslateMessage(&message); // 将消息转化为有效的窗口消息 DispatchMessage(&message); // 派发消息给相应的窗口过程 } return; } DWORD finish; const DWORD start = GetTickCount(); // 获取当前的时间戳(从系统启动以来的毫秒数) do { if (PeekMessage(&message, nullptr, 0, 0, PM_REMOVE)) { TranslateMessage(&message); // 转换消息 DispatchMessage(&message); // 处理消息 } Sleep(1); // 暂停 1 毫秒,防止过度占用 CPU finish = GetTickCount(); // 获取当前的时间戳 } while ((finish - start) < nDelayMs); // 循环直到经过的时间大于指定的延迟时间 } BoardType CPerformanceMelsec::FindBoardTypeByChannel(const int nChannel) { if (nChannel >= MELSECNET_CHANNEL(1) && nChannel <= MELSECNET_CHANNEL(4)) { return BoardType::MELSECNET_H; } else if (nChannel >= CC_LINK_CHANNEL(1) && nChannel <= CC_LINK_CHANNEL(4)) { return BoardType::CC_LINK_VER_2; } else if (nChannel >= CC_LINK_IE_CONTROL_CHANNEL(1) && nChannel <= CC_LINK_IE_CONTROL_CHANNEL(4)) { return BoardType::CC_LINK_IE_CONTROL; } else if (nChannel >= CC_LINK_IE_FIELD_CHANNEL(1) && nChannel <= CC_LINK_IE_FIELD_CHANNEL(4)) { return BoardType::CC_LINK_IE_FIELD; } else if (nChannel >= CC_LINK_IE_TSN_CHANNEL(1) && nChannel <= CC_LINK_IE_TSN_CHANNEL(4)) { return BoardType::CC_LINK_IE_TSN; } return BoardType::UNKNOWN; } // 合并网络号和站点号 short CPerformanceMelsec::CombineStation(const StationIdentifier& station) { return static_cast(station.nStNo | ((station.nNetNo << 8) & 0xFF00)); } // 计算软元件类型 short CPerformanceMelsec::CalculateDeviceType(const StationIdentifier& station, DeviceType enDevType) { int nDevType = static_cast(enDevType); // 根据软元件类型的特定规则进行计算 if (enDevType == DeviceType::LX || enDevType == DeviceType::LY || enDevType == DeviceType::LB || enDevType == DeviceType::LW || enDevType == DeviceType::LSB || enDevType == DeviceType::LSW) { // 网络号加偏移 nDevType += station.nNetNo; } else if (enDevType == DeviceType::ER) { // 文件寄存器的块号加偏移 nDevType += 0; } else if (enDevType == DeviceType::SPG) { // 起始 I/O No. ÷ 16 的值 nDevType += 0 / 16; } return static_cast(nDevType); } // std::vector转换为std::vector void CPerformanceMelsec::ConvertCharToShort(const std::vector& vecChar, std::vector& vecShort) { vecShort.resize((vecChar.size() + 1) / 2, 0); // 调整 short 容器大小 for (size_t i = 0; i < vecChar.size(); i++) { if (i % 2 == 0) { vecShort[i / 2] = static_cast(vecChar[i]); // 低字节 } else { vecShort[i / 2] |= static_cast(vecChar[i]) << 8; // 高字节 } } } // std::vector转换为std::vector void CPerformanceMelsec::ConvertShortToChar(const std::vector& vecShort, std::vector& vecChar) { vecChar.resize(vecShort.size() * 2); // 调整 char 容器大小 for (size_t i = 0; i < vecShort.size(); i++) { vecChar[i * 2] = static_cast(vecShort[i] & 0xFF); // 低字节 vecChar[i * 2 + 1] = static_cast((vecShort[i] >> 8) & 0xFF); // 高字节 } } // std::vector转换为std::vector void CPerformanceMelsec::ConvertUint8ToShort(const std::vector& vecUint8, std::vector& vecShort) { vecShort.resize((vecUint8.size() + 1) / 2, 0); // 调整 short 容器大小 for (size_t i = 0; i < vecUint8.size(); i++) { if (i % 2 == 0) { vecShort[i / 2] = static_cast(vecUint8[i]); // 低字节 } else { vecShort[i / 2] |= static_cast(vecUint8[i] << 8); // 高字节 } } } // std::vector转换为std::vector void CPerformanceMelsec::ConvertShortToUint8(const std::vector& vecShort, std::vector& vecUint8) { vecUint8.resize(vecShort.size() * 2); // 调整 uint8_t 容器大小 for (size_t i = 0; i < vecShort.size(); i++) { vecUint8[i * 2] = static_cast(vecShort[i] & 0xFF); // 低字节 vecUint8[i * 2 + 1] = static_cast((vecShort[i] >> 8) & 0xFF); // 高字节 } } // std::vector转换为std::vector void CPerformanceMelsec::ConvertUint32ToShort(const std::vector& vecUint32, std::vector& vecShort) { vecShort.resize(vecUint32.size() * 2); // 每个 uint32_t 转换为两个 short for (size_t i = 0; i < vecUint32.size(); i++) { vecShort[i * 2] = static_cast(vecUint32[i] & 0xFFFF); // 低16位 vecShort[i * 2 + 1] = static_cast((vecUint32[i] >> 16) & 0xFFFF); // 高16位 } } // std::vector转换为std::vector void CPerformanceMelsec::ConvertShortToUint32(const std::vector& vecShort, std::vector& vecUint32) { vecUint32.resize((vecShort.size() + 1) / 2, 0); // 每两个 short 合并为一个 uint32_t for (size_t i = 0; i < vecUint32.size(); i++) { vecUint32[i] = (static_cast(static_cast(vecShort[i * 2 + 1])) << 16) | // 高16位 static_cast(static_cast(vecShort[i * 2])); // 低16位 } } //============================================模板辅助函数==================================================== // 验证站点参数和数据有效性 template int CPerformanceMelsec::ValidateStationAndData(const StationIdentifier& station, const std::vector& vecData) { // 验证站点参数 const int nRet = ValidateStation(station); if (nRet != 0) { return nRet; // 如果站点验证失败,返回对应错误码 } // 验证数据是否为空 if (vecData.empty()) { return ERROR_CODE_INVALID_PARAM; } return 0; // 验证通过 } // 由低转高容器的模板(整型) template void CPerformanceMelsec::ConvertLowToHigh(const std::vector& vecLow, std::vector& vecHigh) { static_assert(std::is_integral::value && std::is_integral::value, "T and U must be integral types"); // 自动计算 nGroupSize constexpr size_t nGroupSize = sizeof(U) / sizeof(T); // 如果 T 和 U 的大小相等,直接转换 if (sizeof(T) == sizeof(U)) { vecHigh.assign(vecLow.begin(), vecLow.end()); return; } // 如果 U 的大小是 T 的倍数,正常组合 static_assert(sizeof(U) > sizeof(T), "Size of U must be greater than or equal to size of T"); // 计算完整组的数量 size_t nHighSize = (vecLow.size() + nGroupSize - 1) / nGroupSize; // 向上取整 vecHigh.resize(nHighSize, 0); // 合并低位数据到高位数据 for (size_t i = 0; i < vecLow.size(); i++) { vecHigh[i / nGroupSize] |= (static_cast(vecLow[i]) << ((i % nGroupSize) * CHAR_BIT * sizeof(T))); } return vecHigh; } // 由高转低容器的模板(整型) template void CPerformanceMelsec::ConvertHighToLow(const std::vector& vecHigh, std::vector& vecLow) { static_assert(std::is_integral::value && std::is_integral::value, "T and U must be integral types"); // 自动计算 nGroupSize constexpr size_t nGroupSize = sizeof(T) / sizeof(U); // 如果 T 和 U 的大小相等,直接转换 if (sizeof(T) == sizeof(U)) { vecLow.assign(vecHigh.begin(), vecHigh.end()); return; } // 如果 T 的大小是 U 的倍数,正常分解 static_assert(sizeof(T) > sizeof(U), "Size of T must be greater than or equal to size of U"); size_t nLowSize = vecHigh.size() * nGroupSize; // 低容器的大小 vecLow.resize(nLowSize, 0); // 分解高位数据到低位数据 for (size_t i = 0; i < vecHigh.size(); i++) { for (size_t j = 0; j < nGroupSize; j++) { vecLow[i * nGroupSize + j] = static_cast((vecHigh[i] >> (j * CHAR_BIT * sizeof(U))) & ((1ULL << (CHAR_BIT * sizeof(U))) - 1)); } } return vecLow; }